Straight-Through Estimator as Projected Wasserstein Gradient Flow

Pengyu Cheng¹, Chang Liu², Chunyuan Li³, Dinghan Shen¹, Ricardo Henao¹ and Lawrence Carin¹

¹Duke University, ²Tsinghua University, ³Microsoft Research

April 5, 2020

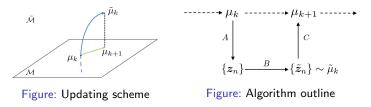
Projected Wasserstein Gradient Flow (pWGF)

 \mathcal{M} is a *d*-dimensional discrete distribution family parameterized by $\boldsymbol{\theta}$. Let $\tilde{\mathcal{M}}$ be the *d*-dimensional 2-Wasserstein space. *f* is a cost function. We aim to minimize the expected cost

$$\min_{\theta} \mathbb{E}_{\boldsymbol{z} \sim p_{\theta}}[f(\boldsymbol{z})] = \min_{\mu \in \mathcal{M}} \mathbb{E}_{\boldsymbol{z} \sim \mu}[f(\boldsymbol{z})] =: \min_{\mu \in \mathcal{M}} F[\mu].$$

We propose a 3-step updating scheme: In k-th iteration,

- A: draw samples $\{z_n\}$ from current distribution μ_k ;
- B: update $\{z_n\}$ to $\{\tilde{z}_n\} \sim \tilde{\mu}_k$ via Wasserstein gradient flow in $\tilde{\mathcal{M}}$;
- C: project $\tilde{\mu}_k$ back to μ_{k+1} by minimizing Wasserstein distance $W(\mu, \tilde{\mu}_k)$.



ST as pWGF and its improvement

Various algorithms can be derived from step C:

Approximation to Wasserstein distance
Difference in Means
Maximum Mean Discrepancy

Experiments on Poisson inference task show improvement by pWGF:

- Real data $\{z_n\} \sim p(z) = \text{Poisson}(\lambda_0 = 5).$
- Generate fake data $\{z'_n\} \sim q_\lambda(z) = \mathsf{Poisson}(\lambda)$
- Discriminator $D_{\omega}(z)$ gives probability that z comes from real data.
- $\max_{\lambda} \min_{\omega} \{ \mathbb{E}_{z \sim \rho} [\log D_{\omega}(z)] + \mathbb{E}_{z' \sim q_{\lambda}} [\log(1 D_{\omega}(z'))] \}$

