# Gaussian-Process-Based Dynamic Embedding for Textual Networks

Pengyu Cheng, Yitong Li, Xinyuan Zhang, Liqun Chen, David Carlson, Lawrence Carin **Duke University** 

### Graph Gaussian Process

We encode each  $\boldsymbol{w}_n$  into the textual embedding space as  $\boldsymbol{x}_n \in \mathbb{R}^d$ .

We define a latent function  $f(\mathbf{x})$  over textual embeddings with a GP prior  $f(\mathbf{x}) \sim \mathcal{GP}(\mathbf{0}, k(\mathbf{x}_n, \mathbf{x}_{n'}))$ .

To infer the structure embedding  $s_n$ , we apply a graph diffusion on the top of the GP. At *i*-th dimension, the collection of structural embeddings follow

$$p(s_1^{(i)}, \dots, s_N^{(i)} | \boldsymbol{x}_1, \dots, \boldsymbol{x}_N) = \mathcal{N}(\boldsymbol{0}, \boldsymbol{P}_*^{\mathsf{T}} \boldsymbol{K}_{xx} \boldsymbol{P}_*),$$
  
where  $\boldsymbol{P}_* = \sum_{j=0}^J \alpha_j \boldsymbol{P}^j$  includes different order graph topology information,  $[\boldsymbol{K}_{xx}]_{ij} = k_{\theta}(\boldsymbol{x}_i, \boldsymbol{x}_j)$  is a kernel matrix.

## **Inducing Points**

GPs suffer from computational complexity with large data size N. To scale up the model, we use the inducing points.

Let  $\boldsymbol{Z} = [\boldsymbol{z}_1, \cdots, \boldsymbol{z}_M]^\intercal$  with M < N denote inducing points (pseudo-textual embeddings) in the same space with  $\boldsymbol{X}$ .

Assume  $\boldsymbol{U} = [\boldsymbol{u}_1, \cdots, \boldsymbol{u}_M]^\intercal$  are corresponding the pseudo-structural embeddings of  $\boldsymbol{Z}$ , which is a function of  $\boldsymbol{z}$  following the same GP function.

Given  $\boldsymbol{Z}$  and  $\boldsymbol{U}$ , we have

$$p(\mathbf{S}_i|\mathbf{X},\mathbf{Z},\mathbf{U}) = \mathcal{N}\left(\boldsymbol{\mu}_{S_i|Z},\boldsymbol{\Sigma}_{S|Z}\right),$$
 $\boldsymbol{\mu}_{S_i|Z} = \mathbf{P}_*^\intercal \mathbf{K}_{XZ} (\mathbf{K}_{ZZ} + \sigma \mathbf{I}_M)^{-1} \mathbf{U}_i,$ 
 $\boldsymbol{\Sigma}_{S|Z} = \mathbf{P}_*^\intercal \mathbf{K}_{XX} \mathbf{P}_* - \mathbf{P}_*^\intercal \mathbf{K}_{XZ} (\mathbf{K}_{ZZ} + \sigma \mathbf{I}_M)^{-1} \mathbf{K}_{ZX} \mathbf{P}_*,$ 

where  $[\boldsymbol{K}_{XZ}]_{nm} = k(\boldsymbol{x}_n, \boldsymbol{z}_m)$  and  $[\boldsymbol{K}_{ZZ}]_{mm'} = k(\boldsymbol{z}_m, \boldsymbol{z}_{m'})$ ,  $\boldsymbol{S}_i$  is the concatenation of the *i*th element from all node structural embeddings.

We use the mean  $\hat{\mathbf{S}} = \mathbf{P}_*^{\mathsf{T}} \mathbf{K}_{XZ} (\mathbf{K}_{ZZ} + \sigma \mathbf{I}_M)^{-1} \mathbf{U}$ , as unbiased estimation of structural embeddings.

When new nodes come, updates update

$$[\boldsymbol{s}, \boldsymbol{s}_{new}] = \sum_{j=0}^{J} \alpha_j \boldsymbol{P}_{new}^j \boldsymbol{K}_{x_{new}Z} (\boldsymbol{K}_{ZZ} + \sigma \boldsymbol{I}_M)^{-1} \boldsymbol{U}.$$



## Background

combine the textual and structural embeddings.

**Textual Networks** widely appear in the real-word applications, *e.g.* citation networks.

The previous methods learn a **textual** embedding and a **structural** embedding for each document, and concatenate them together.

The **limitations** of these methods are:

- All nodes are required during training.
- When new nodes come or graph edges change, whole model needs to be re-trained to learn structural embeddings.



#### Notation

The Graph is given as  $(\boldsymbol{W}, \boldsymbol{A})$ , where  $\boldsymbol{W} = \{\boldsymbol{w}_1, \dots, \boldsymbol{w}_N\}$  is collection of text.  $\boldsymbol{A}$  is the adjacency matrix. degree matrix  $\boldsymbol{D} = \operatorname{diag}(\boldsymbol{A}\boldsymbol{1}_N)$ .

The normalized transition matrix

$$m{P} = (m{D} + m{I}_N)^{-1} (m{A} + m{I}_N)$$

Textual embeddings  $\boldsymbol{X} = \{\boldsymbol{x}_n\}_{n=1}^N$ . Structural embeddings  $\boldsymbol{S} = \{\boldsymbol{s}_n\}_{n=1}^N$ .

## Training Loss

We concatenate textual and structural embedding together as the node embedding  $h_i = [x_i, s_i]$  we minimize the negative sampling loss:

$$\mathcal{L} = -rac{1}{|\mathcal{E}|} \sum_{(i,j)\in\mathcal{E}} \log \sigma(m{h}_i \cdot m{h}_j) + rac{1}{N_s} \sum_{(i,j)
ot\in\mathcal{E}} \log \sigma(m{h}_i \cdot m{h}_j),$$

where  $N_s = \#\{(i,j) \notin \mathcal{E}_t\}$  is the number of negative sample pairs.

#### Gaussian Process

A Gaussian Process (GP)  $f(\boldsymbol{x})$  is a collection of random variables such that any subset of those variables are Gaussian distributed. Given  $\{\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n\}, [f(\boldsymbol{x}_1), f(\boldsymbol{x}_2), \dots, f(\boldsymbol{x}_n)]^{\intercal} \sim \mathcal{N}([m(\boldsymbol{x}_1), m(\boldsymbol{x}_2), \dots, m(\boldsymbol{x}_n)]^{\intercal}, [k(\boldsymbol{x}_i, \boldsymbol{x}_j)]_{n \times n}),$  where  $m(\boldsymbol{x})$  is a mean function and  $k(\cdot, \cdot)$  is a covariance kernel function.

To learn  $y = f(\boldsymbol{x})$  with training data  $\{(\boldsymbol{x}_i, y_i)\}_{i=1}^N$  and unlabeled testing data  $\{\boldsymbol{x}_j'\}_{j=1}^M$ ,  $[f(\boldsymbol{x}_1), f(\boldsymbol{x}_2), \dots, f(\boldsymbol{x}_n), f(\boldsymbol{x}_1'), \dots, f(\boldsymbol{x}_M')]$  follows a multivariate Gaussian distribution.

Given observations  $f(\mathbf{x}_i) = y_i$ , the conditional distribution for  $[f(\mathbf{x}'_1), \dots, f(\mathbf{x}'_M)]$  can be easily obtained, which is also Gaussian distributed.

## Experiments

Static node classification:

|                 | Cora |      |      |             | DBLP |      |      |      |  |
|-----------------|------|------|------|-------------|------|------|------|------|--|
| %Training Nodes | 10%  | 30%  | 50%  | <b>70</b> % | 10%  | 30%  | 50%  | 70%  |  |
| LINE            | 53.9 | 56.7 | 58.8 | 60.1        | 42.7 | 43.8 | 43.8 | 43.9 |  |
| $\mathbf{TADW}$ | 71.0 | 71.4 | 75.9 | 77.2        | 67.6 | 68.9 | 69.2 | 69.5 |  |
| $\mathbf{CANE}$ | 81.6 | 82.8 | 85.2 | 86.3        | 71.8 | 73.6 | 74.7 | 75.2 |  |
| $\mathbf{DMTE}$ | 81.8 | 83.9 | 86.3 | 87.9        | 72.9 | 74.3 | 75.5 | 76.1 |  |
| WANE            | 81.9 | 83.9 | 86.4 | 88.1        | NA   | NA   | NA   | NA   |  |
| DetGP (Wavg)    | 80.5 | 85.4 | 86.7 | 88.5        | 76.9 | 78.3 | 79.1 | 79.3 |  |
| DetGP (DWavg)   | 83.1 | 87.2 | 88.2 | 89.8        | 78.0 | 79.3 | 79.6 | 79.8 |  |

Static link prediction:

|                           | Cora |      |      |      | HepTh |      |      |      |      |      |
|---------------------------|------|------|------|------|-------|------|------|------|------|------|
| %Training Edges           | 15%  | 35%  | 55%  | 75%  | 95%   | 15%  | 35%  | 55%  | 75%  | 95%  |
| $\overline{\rm node2vec}$ | 55.9 | 66.1 | 78.7 | 85.9 | 88.2  | 57.1 | 69.9 | 84.3 | 88.4 | 89.2 |
| ${f DeepWalk}$            | 56.0 | 70.2 | 80.1 | 85.3 | 90.3  | 55.2 | 70.0 | 81.3 | 87.6 | 88.0 |
| CANE                      | 86.8 | 92.2 | 94.6 | 95.6 | 97.7  | 90.0 | 92.0 | 94.2 | 95.4 | 96.3 |
| $\mathbf{DMTE}$           | 91.3 | 93.7 | 96.0 | 97.4 | 98.8  | NA   | NA   | NA   | NA   | NA   |
| WANE                      | 91.7 | 94.1 | 96.2 | 97.5 | 99.1  | 92.3 | 95.7 | 97.5 | 97.7 | 98.7 |
| DetGP (Wavg)              | 92.8 | 94.8 | 95.5 | 96.2 | 97.5  | 93.2 | 95.1 | 97.0 | 97.3 | 97.9 |
| DetGP (DWavg)             | 93.4 | 95.2 | 96.3 | 97.5 | 98.8  | 94.3 | 96.2 | 97.7 | 98.1 | 98.5 |

Dynamic node classification:

|                                  | Cora |      |      |      | HepTh |      |      |             |
|----------------------------------|------|------|------|------|-------|------|------|-------------|
| %Training Nodes                  | 10%  | 30%  | 50%  | 70%  | 10%   | 30%  | 50%  | <b>70</b> % |
| Only Text (Wavg)                 | 61.2 | 77.9 | 87.9 | 90.3 | 68.3  | 83.7 | 84.2 | 86.9        |
| Neighbor-Aggregate (Max-Pooling) | 54.6 | 69.1 | 78.7 | 87.3 | 59.6  | 78.3 | 79.9 | 80.7        |
| Neighbor-Aggregate (Mean)        | 61.8 | 78.4 | 88.0 | 91.2 | 68.2  | 83.9 | 85.5 | 88.3        |
| GraphSAGE (Max-Pooling)          | 62.1 | 78.6 | 88.6 | 92.4 | 68.4  | 85.8 | 88.1 | 91.2        |
| GraphSAGE (Mean)                 | 62.2 | 79.1 | 88.9 | 92.6 | 69.1  | 85.9 | 89.0 | 92.4        |
| $\mathbf{DetGP}$                 | 62.9 | 81.1 | 90.9 | 93.0 | 70.7  | 86.6 | 90.7 | 93.3        |

Dynamic link prediction:

|                                  | Cora |      |      | DBLP        |      |      |      |             |
|----------------------------------|------|------|------|-------------|------|------|------|-------------|
| % Training Nodes                 | 10%  | 30%  | 50%  | <b>70</b> % | 10%  | 30%  | 50%  | <b>70</b> % |
| Only Text (Wavg)                 | 60.2 | 76.3 | 83.5 | 84.8        | 56.7 | 67.9 | 70.4 | 73.5        |
| Neighbor-Aggregate (Max-Pooling) | 55.8 | 70.2 | 78.4 | 80.5        | 51.8 | 60.5 | 68.3 | 70.6        |
| Neighbor-Aggregate (Mean)        | 60.1 | 77.2 | 84.1 | 85.0        | 56.8 | 68.2 | 71.3 | 74.7        |
| GraphSAGE (Max-Pooling)          | 61.3 | 78.2 | 85.1 | 86.3        | 58.9 | 69.1 | 72.4 | 74.9        |
| GraphSAGE (Mean)                 | 61.4 | 78.4 | 85.5 | 86.6        | 59.0 | 69.3 | 72.7 | 75.1        |
| $\overline{\mathrm{DetGP}}$      | 62.1 | 79.3 | 85.8 | 86.6        | 60.2 | 70.1 | 73.2 | 75.8        |
|                                  |      |      |      |             |      |      |      |             |