Gaussian-Process-Based Dynamic Embedding for Textual Networks
Pengyu Cheng, Yitong Li, Xinyuan Zhang, Liqun Chen, David Carlson, Lawrence Carin

Graph Gaussian Process

We encode each w,, into the textual embedding
space as &, € R®

We define a latent function f(a) over textual embed-

dings with a GP prior f(x) ~ GP (0, k(x,, z.)).

To infer the structure embedding s,, we apply a
oraph diffusion on the top of the GP. At ¢-th dimen-

sion, the collection of structural embeddings follow

p(s@, o s%)\ml, ...,xy)=N(0,P'K, . P,),
where P, = ijooszj includes different order graph
topology information, [K,.|i; = ko(x;, x;) is a ker-
nel matrix.

Inducing Points

GPs suffer from computational complexity with
large data size N. To scale up the model, we use
the inducing points.

Let Z = |zy,---, zy|T with M < N denote induc-
ing points (pseudo-textual embeddings) in the same
space with X.

Assume U = |uq, -+ ,uys|T are corresponding the
pseudo-structural embeddings of Z, which is a func-
tion of z following the same GP function.

Given Z and U, we have
p(S’L|X7 Za U) =N (IJ’SZ'\Za ES\Z) ;
sz = PIKx, (K7, + CTIM)_1 U,
So7=PIKxxP,— PIKx7(Kzz+0ly)" KzxP,
Where [KXZ]nm — k’(a:n, Zm) and [Kzz]mm/ —
k(zm, zm), S; is the concatenation of the ith ele-
ment from all node structural embeddings.

We use the mean S = P'Kyx; (Kzz+ UIM)_1 U,

as unbiased estimation of structural embeddings.

When new nodes come, updates update

'S, Spew| = Z}-Jzooszj K, 7(Kz;+oly) U.

new Lnew

Duke University

Illustration of DetGP

Text
Encoder

(2] =%

Textual
Embedding

Network

Embedding

Structural
Embedding

Structure Embedding Layer

Figure: With connection information A of the network and textual side information T" = {¢,,})"_ as input, DetGP first encodes
text T to a low-dimensional representation X = {x,,}."_,, and then infers the structural embeddings by X and A via a
Gaussian process. Inducing points Z = {z,,}¥_, are used to reduce computational complexity. The output network embeddings

combine the textual and structural embeddings.

Background

Textual Networks widely appear in the real-
word applications, e.g. citation networks.

The previous methods learn a textual embedding
and a structural embedding for each document,
and concatenate them together.

The limitations of these methods are:

e All nodes are required during training.

e When new nodes come or graph edges change,
whole model needs to be re-trained to learn
structural embeddings.

,"
-
-’
-

Notation

The Graph is given as (W, A), where W =
{w;....,wy} is collection of text. A is the ad-
jacency matrix. degree matrix D = diag(Aly).
The normalized transition matrix

P= (D +Iy) YA+ Iy)

Textual embeddings X = {x, }'"_,.
Structural embeddings S = {s,}’_;.

Training Loss

We concatenate textual and structural embedding
together as the node embedding h; = |x;, s;]

we minimize the negative sampling loss:

1 1
= — l h;, -h,)+
£ i fee 0BT BT s
where Ny = #{(i,j) € &} is the number of negative

sample pairs.

10g O-(hz“hj),

(Gaussian Process

A Gaussian Process (GP) f(ax) is a collection

of random variables such that any subset of
those variables are Gaussian distributed. Given
{1, @2,z (@), f(@2),. -0 fl@n)]T ~
N (lm(@1), m(@s), ... ,m(@,)]T, [k(i, 25)]nxn),
where m(ax) is a mean function and k(-,-) is a
covariance kernel function.

To leartn y = f(x)

{(x;, 1)}, and unlabeled testing data {a/}L,,
flxy), f(xa) ..., flx,), f(x)),..., f(x))] follows
a multivariate Gaussian distribution.

Given observations f(ax;) = v;, the conditional dis-
tribution for |f(ax}),..., f(a),)] can be easily ob-
tained, which is also Gaussian distributed.

with training data

Experiments

Static node classification:

Cora DBLP
%Training Nodes 10% 30% 50% 70% 10% 30% 50% 70%
LINE 53.9 56.7 588 60.1 427 43.8 43.8 439
TADW 71.0 714 759 772 676 689 69.2 69.5
CANE 8l.6 82.8 &8.2 86.3 T71.8 73.6 747 752
DMTE 81.8 83.9 &86.3 &7.9 729 743 755 76.1
WANE 819 839 8.4 8.1 NA NA NA NA

DetGP (Wavg) 805 854 86.7 835 769 783 79.1 79.3
DetGP (DWavg) 83.1 87.2 88.2 89.8 78.0 79.3 79.6 79.8

Static link prediction:

Cora HepTh
%Training Edges 15% 35% 55% 75% 95% 15% 35% 55% 75% 95%

node2vec 55.9 66.1 787 85.9 882 571 699 &4.3 8.4 9.2
DeepWalk 56.0 70.2 80.1 853 90.3 552 70.0 81.3 &87.6 &3.0

CANE 86.8 922 946 956 97.7 90.0 92.0 942 954 96.3
DMTE 91.3 937 96.0 974 988 NA NA NA NA NA
WANE 91.7 941 96.2 97.5 99.1 923 95.7 975 97.7 98.7

DetGP (Wavg) 928 948 955 96.2 975 932 951 97.0 973 979
DetGP (DWavg) 93.4 95.2 96.3 97.5 988 94.3 96.2 97.7 98.1 98.5

Dynamic node classification:

Cora HepTh
%Training Nodes 10% 30% 50% 70% 10% 30% 50% 70%
Only Text (Wavg) 61.2 779 879 903 683 83.7 842 86.9
Neighbor-Aggregate (Max-Pooling) 546 69.1 787 873 59.6 783 79.9 80.7
Neighbor-Aggregate (Mean) 61.8 784 83.0 912 682 839 855 83.3
GraphSAGE (Max-Pooling) 62.1 78.6 88.6 924 684 85.8 881 91.2
GraphSAGE (Mean) 62.2 79.1 889 926 69.1 859 89.0 924
DetGP 62.9 81.1 90.9 93.0 70.7 86.6 90.7 93.3
Dynamic link prediction:

Cora DBLP

% Training Nodes 10% 30% 50% 70% 10% 30% 50% 70%

Only Text (Wavg) 60.2 76.3 835 84.8 56.7 679 704 73.5
Neighbor-Aggregate (Max-Pooling) 558 70.2 784 80.5 51.8 60.5 68.3 70.6
Neighbor-Aggregate (Mean) 60.1 772 84.1 85.0 56.8 682 T71.3 747
GraphSAGE (Max-Pooling) 61.3 782 851 86.3 589 69.1 724 749
GraphSAGE (Mean) 614 784 855 86.6 59.0 69.3 T2.7 75.1
DetGP 62.1 79.3 85.8 86.6 60.2 70.1 73.2 75.8

