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Abstract

To back-propagate gradients through discrete random variables,
the Straight-Through (ST) estimator is widely used, but it lacks
theoretical justification. In this paper, we interpret ST as the sim-
ulation of projected Wasserstein gradient flow (pWGF). Further, a
new pWGF estimator variant is proposed, which exhibits superior
performance on distributions with infinite support, e.g., Poisson
distributions. Empirically, we show that ST and our proposed
estimator, while applied to different types of discrete structures
(including both Bernoulli and Poisson latent variables), exhibit
comparable or even better performances relative to other state-of-
the-art methods.

Problem Description

We aim to minimize the expected cost
L(θ) = Ez∼pθ(z)[f (z)], (1)

where z is a d-dimensional discrete random vector, pθ(z) is a discrete
distribution with parameter θ, and f (z) is a cost function.

Straight-Through Estimator

In Bernoulli cases, the distribution parameter θ is the Bernoulli pa-
rameter p = (p1, p2, . . . , pd). Aim to calculate ∇pEz∼Bern(p)[f (z)].

In i-th dimension, zi ∼ Bern(pi) can be interpreted as zi =
h(pi, εi) = 1pi>εi, where εi ∼ U(0, 1), and h(pi, εi) is a hard threshold
function. With the reparameterization trick:
∇pEz∼Bern(p)[f (z)] = ∇pEε∼U(0,1)[f (h(p, ε))] = Eε[∇pf (h(p, ε))]
When applying chain rule:

∂f (h(pi, εi))
∂pi

= ∂f (h(pi, εi))
∂h(pi, εi)

∂h(pi, εi)
∂pi

= ∂f

∂zi
∂h(pi, εi)
∂pi

ST≈ ∂f

∂zi
,

ST directly sets ∂h
∂pi = 1, which lacks mathematical justification.

Proposed pWGF Framework

•DenoteM as the d-dimensional discrete distribution family
parameterized by θ.

min
θ

Ez∼pθ[f (z)] = min
µ∈M

Ez∼µ[f (z)] =: min
µ∈M

F [µ].
• If the gradient of F onM as ∇MF available, gradient descent
can be apply. However, discrete condition onM makes too many
constraints on ∇MF . if we relax the discrete constraint and
perform updates in an appropriate larger space M̃, the
calculation of the gradient ∇M̃F can be much easier.

•We propose a 3-step updating scheme: In k-th iteration,
1 A: Draw samples {zn} from current distribution µk;
2 B: Update {zn} to {z̃n} ∼ µ̃k via Wasserstein gradient flow in 2-Wasserstein
space M̃;

3 C: Project µ̃k back to µk+1 by minimizing Wasserstein distance W (µ, µ̃k).

Figure: Updating scheme Figure: Algorithm outline

Mathematical Justification to ST

•Straight-Through (ST) estimator is a special case of our projected
Wasserstein Gradient Flow (pWGF) updating scheme.

•When projecting µ̃k back to µk+1, µk+1 = arg minµ∈MW (µ, µ̃k),
ST approximates 2-Wasserstein distance via its lower bound, the
absolute value of expectation |Ez∼µ[z]− Ez̃∼µ̃k[z̃]|.

•For one-dimensional Bernoulli distribution, µ ∈M can be
parameterized by p, µ = Bern(p). Then we can calculate
∂
∂pW (µ, µ̃k) as the direction to minimize W (µ, µ̃k):

∂

∂p
W (µ, µ̃k)2 ≈ ∂

∂p
|Ez∼µ[z]− Ez̃∼µ̃k[z̃]|2 = ∂

∂p
(p− 1

N
N∑
n=1

z̃n)2

=2(p− 1
N

N∑
n=1

z̃n) ≈
2
N

N∑
n=1

(zn − z̃n) = 2ε
N

N∑
n=1
∇f (zn),

which is a multi-sample version ST estimator.

Proposed Estimator

A more principled way to approximate the Wasserstein distance
is to use Maximum Mean Discrepancy (MMD): ∆2(µ, ν) =
Ex1,x2∼µ[K(x1,x2)] + Ey1,y2∼ν[K(y1,y2)] − 2Ex∼µ,y∼ν[K(x,y)],
where K(·, ·) is a selected kernel. In practice, instead of minimizing
W (µ, µ̃k), we can minimize the empirical expectation ∆2(µ, µ̃) ≈
Ez1,z2∼µ[K(z1, z2)] + 1

N 2
∑N
n,n′=1K(z̃n, z̃n′)− 2 1

N
∑N
n=1 Ez∼µK(z, z̃n).

Experiment Results

pWGF shows improvement on parameter inference task of Poisson
distributions.

•Real data {zn} ∼ p(z) = Poisson(λ0 = 5).
•Fake data {z′n} ∼ qλ(z) = Poisson(λ)
•Discriminator Dω(z) gives probability that z comes from real
data.

• maxλ minω{Ez∼p[logDω(z)] + Ez′∼qλ[log(1−Dω(z′))]}
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Figure: Learning Curves of Poisson parameter

pWGF ST Muprop Reinforce
Mean 5.0076 5.1049 5.0196 4.9452
Std 0.013 0.161 0.159 0.173

Table: Mean and Standard Derivation of Inference

Conclusion

We explain the origin of the widespread adoption of ST estimator,
and represent a helpful step towards exploring alternative gradient
estimators for discrete variables.


